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ABSTRACT
A norm distribution consisting of test scores

received by 810 college students on a 150 item dichotomously-scored
four-alternative multiple-choice test was empirically estimated
through several item-examinee sampling procedures. The post mortem
item-sampling investigation was specifically designed to manipulate
systematically the variables of number of subtests, number of items
per subtest, and number of examinees responding to each subtest.
Defining one observation as the score received by one examinee on one
item, the results suggest that as the number of observations
increases beyond 1.23 per cent of the data base all procedures
produce stochastically equivalent results. The results of this
investigation indicate that, in estimating a norm distribution by
item-sampling, the variable of importance is not the item-sampling
procedure per se but is instead the number of observations obtained
by the procedure. It should be noted, however, inat in this
investigation the test score norm distribution was approximately
symmetrical and the possibility should not be overlooked that
item-sampling as a procedure may be robust for symmetrical norm
distributions. (Author)
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The negative hypergeometric distribution has been found to provide

a reasonably good fit for a variety of test score distributions where

the test score is the number of correct answers (Keats & Lord, 1962).

The negative hypergeometric distribution is, within this context, a

function of three parameters: the number of test items and estimates

of the mean and variance of the normative distribution. Operating

within the framework of the item-sampling model, lord (1960) has

provided the appropriate equations for computing unbiased estimates

of the first two moments of a frequency distribution and has, further-

more, demonstrated (Lord, 1962) that a norm distribution may be

satisfactorily approximated by a negative hypergeometric distribution

fitted to parameters estimated through item-sampling. The procedure

is as follows:

I. The test items to be normed are divided into t subtests and

each subtest is administered to a different set of examinees.

2. The results obtained from each subtest (item-examinee sample)

provide an estimate of the mean P and variance of the norm

distribution whenwhen formulas 9 and 10 in Lord (1962) are applied.

A single estimate of p is obtained by averaging the t estimates

of p obtained from each item-examinee sample; a single estimate

of a2, by averaging the t estimates of the population variance.
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3. Substituting each possible test score x into the negative

hypergeometric function specified in equation 23.6.10 in

Lord and Novick (1968) produces an estimate of the proportion

of examinees in the norm population receiving that test

1
score.

Implementing the procedure outlined above produces many interesting

questions: How many different subtests t of items and examinees are

required to estimate satisfactorily the norm di-6t=ibution? Is it

more appropriate to administer a fewer number of subtests containing

a larger number of items or a larger number of subtests containing

fewer items? To how many examinees should each subtest be adminis-

tered? Must all items in the test be distributed among the subtests?'

The project described herein was an attempt to provide tentative answers

to questions such as these.

Several investigations (e.g., Plumlee, 1964; Cahen et al., 1969;

Owens & Stvfflebeam, 1969) have estimated parameters by item-sampling

but only Cook and Stufflebeam (1967) have investigated the relative

merits of different item-sampling procedures in estimating a norm

distribution with the negative hypergeometric distribution. It should

be mentioned that the expressed purpose of their study was that of

contrasting two approaches item sampling, given the condition of

sampling without replacement, and examinee sampling in estimating

a norm distribution. Cook and Stufflebeam concluded that item sampling

is equally effective to examinee sampling.
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In the Cook and Stufflebeam (1967) design, the number of subtests

is confounded with number of items per subtest and with number of

examinees receiving each subtest. Using the Cook and Stufflebeam

article as a point of departure, the present investigation was specif-

ically designed to manipulate systematically the variables of number

of subtests, number of items per subtest, and number of examinees

responding to each subtest to determine the relative merits of several

item-sampling procedures which might be used in estimating a norm dis-

tribution.

METHOD

Thz research design was one of a posterimi item-sampling: given

a norm distribution, various item-examinee samples are selected at

random from this data base and used to estimate the distribution from

which they have been sampled. In this investigation the norm distri-

bution consisted of test scores received by 810 college students on a

150 item dichotomously-scored 4 -alternative multiple-choice test

administered as a final examination in the Spring of 1969. On this

examination the mean score P was 87.390 with variance a2 of 324.193

and Kuder-Richardson Formula 21 reliability equal to .893.

The twenty item-sampling procedures used to estimate the norm

distribution are listed in Table 1. as all procedures, with one

exception, are similar only procedure 1 will be described in detail.

Please insert Table 1 about here.
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In procedure 1, the 150 test items were divided by randomly sampling

without replacement into 10 subtests each containing 15 items. From

the pool of 810 examinees, 10 groups of 10 examinees were selected

at random and without replacement. Each subgroup was administered

one subtest, that is, only those items in that subtest were scored for

those examinees.
2

Procedure 1 produced 10 estimates of p and a2.

The pooled estimate of 4 was found to be 87.111; the standard deviation

of the 10 estimates of 4 was 14.867. The pooled estimate of a2 was

318.185 and the standard deviation of the 10 estimates was 263.033.

Using these estimates of the parameters, the Kuder-Richardson Formula

21 reliability coefficient for the full-length test was computed to be

.891. The absolute value of the maximum difference D
max

between the

cumulative relative negative hypergeometric distribution fitted to the

estimates of p and a2 obtained from procedure 1 and the cumulative

relative negative hypergeometric distribution fitted to p and 02

was .038. D
max

between each pair of distributions, the test statistic

for the 1Zolmogorov-Smirnov one-sample test for goodness-of-fit (Siegel,

1954), was selected from 150 differences.

Procedures 1 through 4 are similar to the item-sampling procedures

used by Cook and Stufflebeam (1967) with the exception that the number

of examinees receiving each subtest has been held constant. Procedures

5 through 8 are a replication of 1 through 4 with an increase in the

number of examinees receiving ,each subtest. In procedures 9 through 12

the number of items per subtest and the number of examinees receiving

each subtest have been held constant; in 13 through 16, the number of

subtests and the number of examinees receiving each subtest have been

held constant. In procedures 17 through 20 only the number of examinees

receiving each subtest has been held constant.



5

Each set of four procedures was a systematic exploration of the

Cook and Stufflebeam (1967) design. Certain procedures, i.e., 1 and

9, 2 and 13, 10 and 14, 2 and 18, 12 and 20, are identical and were

computed once; in each instance the results were recorded twice in

Table 2.

RESULTS AND DISCUSSION

All results are recorded in Table 1. On the basis of the Kolmogorov-

Smirnov one-sample testa, three procedures produced negative hypergeometric

distributions which were judged not to be stochastically equivalent 4 to

the fitted norms distribution. In Procedures 1 through 4, with the number

of examinees per subtest being held constant, all negative hypergeometric

distributions were equivalent to the fitted norms distribution. While

it is of theoretical interest to note that the smallest value of.Dma

occurred with that item sampling procedure involving a large number

of subtests with few items per subtest--with the converse being also

true, the effect was nullified (procedures 5 through 8) by an increase

in the numbf.r of examinees receiving each subtest. Procedures 9 through

16 were designed to partial out the effect noted it procedures 1 through

4. Holding the number of items per subtest and the number of examinees

per subtest constant, an increase in the number of subtests produced

a negative hypergeometric distribution more stochastically equivalent

to the fitted norms distribution. Similar results were obtained

(procedures 13 through 16) with an increase in the number of items

per subtest, holding constant the number of subtests and number of
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examinees per subtest. The results from procedures 17 througa 20

suggest that beyond a certain point little is to be gained by simul-

taneously increasing the number of subtests and the number of items

per subtest.

The inconsistencies found in Table 1 (e. g., procedures 17 and 20

producing negative hypergeometric distributions equivalent to the

fitted norms distribution) are made less alarming if Dmax per procedure

is analyzed as a function of the number of observations (one observation

is equal to the score received by one examinee on one item). For small

numbers of observations the values of D
max

are variable and inconsistent;

however, as the number of observations increases beyond a certain point,

all procedures produce equivalent results. That, certain point in this

investigation was approximately 1.23% of the norm data base. It is

not surprising, therefore, that Lord (1962) and Flumlee (1964) obtained

a good approximation with an item-sampling procedure involving 10% of

the total observations and that similar results were obtained by Cook

and Stufflebeam (1967) with procedures involving percentages of total

observations ranging from 9.18 to 49.45.
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FOOTNOTES

1
In the computer program used for calculating values of this proportion,

1/2 was added to a and b as defined in Lord and Novick (1968). Each

term was truncated before substitution into equation 23.6.10. A copy

of the Fortran program with documentation may be obtained upon request

from the author.

2
The exception to this general pattern was found in procedure 17. Each

subtest was formed by randomly sampling without replacement 40 items from

the 150 item pool. It was, therefore, possible for a particular item to

appear in more than one subtest. Only 2 of the 150 items were not selected

for inclusion in any subtest.

3
A referee has pointed out, and correctly so, that the Kolmogorov-Smirnov

tests should be viewed as providing rough indications rather than strict

significance tests. Since the population was finite and since the

sampling was done without replacement, there is necessarily a closer

agreement between sample and population than there would be in random

sampling from an infinite population.

4
Two dtstributions are said to be stochastically equivalent if the two

distributions are distinct and if f(x) = g(x) for all x.
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